Exposure to the electrofusion process can increase the immunogenicity of human cells

电融合过程可增加人体细胞的免疫原性

阅读:5
作者:Barry D Hock, Georgina Roberts, Judith L McKenzie, Prachee Gokhale, Nina Salm, Alexander D McLellan, Nigel W Patton, Justin A Roake

Abstract

The cellular products obtained following electrofusion (EF) of dendritic cells (DC) and tumour cells have shown promise as cancer vaccines. The immunogenicity of these preparations has been attributed to the presence of small numbers of DC-tumour hybrids and the contribution of the non-hybrid tumour cells present has received little attention. In this report, we investigated the effect of the EF process on the immunogenicity of allogeneic human cells, in particular the colorectal cell line, SW620. EF conditions were optimised to yield the maximum number of DC-SW620 hybrids co-expressing tumour associated antigen (TAA) and DC associated antigens. Exposure of SW620 to EF induced significant increases (P < 0.05) in apoptosis and necrosis. Pre-exposure of SW620 to the EF buffer alone [0.3 M glucose, 0.1 mM Ca(CH3COO)2 and 0.5 mM Mg(CH3COO)(2)] resulted in significant increases in TAA uptake by DC during co-culture (P < 0.05). DC phenotype was, however, not altered by exposure to EF treated tumour cells. In co-cultures of PBMC responders with SW620, the levels of IFNgamma release and cytotoxic activity were significantly increased (P < 0.05) by pre-exposure of the SW620 to EF. Pre-exposure of allogeneic non-T cells, the colorectal cell line Lovo and a breast cancer cell line (MCF7) to EF also significantly (P < 0.05) increased the levels of IFNgamma release by responding PBMC. These results demonstrate that the EF process itself can increase the immunogenicity of at least some human cell types independently of hybrid formation. These findings suggest that EF protocols should be evaluated with regard to the possibility that DC-tumour hybrids may not contribute all, or even most, of the immunostimulatory capacity present in preparations of EF treated cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。