Inhibition of NF-kappa B during human dendritic cell differentiation generates anergy and regulatory T-cell activity for one but not two human leukocyte antigen DR mismatches

在人类树突状细胞分化过程中抑制 NF-κB 可产生针对一个而非两个人类白细胞抗原 DR 错配的无能性和调节性 T 细胞活性

阅读:4
作者:Ana Hernandez, Melissa Burger, Bonnie B Blomberg, William A Ross, Jeffrey J Gaynor, Inna Lindner, Robert Cirocco, James M Mathew, Manuel Carreno, Yidi Jin, Kelvin P Lee, Violet Esquenazi, Joshua Miller

Abstract

We examined the in vitro inhibition of human monocyte-derived dendritic cells (DC) maturation via NF-kappaB blockade on T-cell allostimulation, cytokine production, and regulatory T-cell generation. DC were generated from CD14+ monocytes isolated from peripheral blood using GM-CSF and IL-4 for differentiation and TNF-alpha, IL-1beta, and PGE2 as maturational stimuli with or without the NF-kappaB inhibitors, BAY 11-7082 (BAY-DC) or Aspirin (ASA-DC). Stimulator and responder cells were one versus two HLA-DR mismatched in direct versus indirect presentation assays. Both BAY-DC and ASA-DC expressed high levels of HLA-DR and CD86 but always expressed less CD40 compared with controls. Some experiments showed slightly lower levels of CD80. Both BAY- and ASA-allogeneic DC and autologous alloantigen pulsed DC were weaker stimulators of T cells (by MLR) compared with controls, and there was reduced IL-2 and IFN-gamma production by T cells stimulated with BAY-DC or ASA-DC (by ELISPOT) (more marked results were always observed with ASA-treated DC). In addition, NF-kappaB blockade of DC maturation caused the generation of T cells with regulatory function (T regs) but only when T cells were stimulated by either allogeneic (direct presentation) or alloantigen pulsed autologous DC (indirect presentation) with one HLA-DR mismatch and not with two HLA-DR mismatches (either direct or indirect presentation). However, the T regs generated from these ASA-DC showed similar FoxP3 mRNA expression to those from nontreated DC. Extension of this study to human organ transplantation suggests potential therapies using one DR-matched NF-kappaB blocked DC to help generate clinical tolerance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。