Prolonged monoacylglycerol lipase blockade causes equivalent cannabinoid receptor type 1 receptor-mediated adaptations in fatty acid amide hydrolase wild-type and knockout mice

长期单酰甘油脂肪酶阻断会导致脂肪酸酰胺水解酶野生型和基因敲除小鼠产生等效的大麻素受体 1 型受体介导的适应性

阅读:5
作者:Joel E Schlosburg, Steven G Kinsey, Bogna Ignatowska-Jankowska, Divya Ramesh, Rehab A Abdullah, Qing Tao, Lamont Booker, Jonathan Z Long, Dana E Selley, Benjamin F Cravatt, Aron H Lichtman

Abstract

Complementary genetic and pharmacological approaches to inhibit monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH), the primary hydrolytic enzymes of the respective endogenous cannabinoids 2-arachidonoylglycerol (2-AG) and N-arachidonoylethanolamine, enable the exploration of potential therapeutic applications and physiologic roles of these enzymes. Complete and simultaneous inhibition of both FAAH and MAGL produces greatly enhanced cannabimimetic responses, including increased antinociception, and other cannabimimetic effects, far beyond those seen with inhibition of either enzyme alone. While cannabinoid receptor type 1 (CB1) function is maintained following chronic FAAH inactivation, prolonged excessive elevation of brain 2-AG levels, via MAGL inhibition, elicits both behavioral and molecular signs of cannabinoid tolerance and dependence. Here, we evaluated the consequences of a high dose of the MAGL inhibitor JZL184 [4-nitrophenyl 4-(dibenzo[d][1,3]dioxol-5-yl(hydroxy)methyl)piperidine-1-carboxylate; 40 mg/kg] given acutely or for 6 days in FAAH(-/-) and (+/+) mice. While acute administration of JZL184 to FAAH(-/-) mice enhanced the magnitude of a subset of cannabimimetic responses, repeated JZL184 treatment led to tolerance to its antinociceptive effects, cross-tolerance to the pharmacological effects of Δ(9)-tetrahydrocannabinol, decreases in CB1 receptor agonist-stimulated guanosine 5'-O-(3-[(35)S]thio)triphosphate binding, and dependence as indicated by rimonabant-precipitated withdrawal behaviors, regardless of genotype. Together, these data suggest that simultaneous elevation of both endocannabinoids elicits enhanced cannabimimetic activity but MAGL inhibition drives CB1 receptor functional tolerance and cannabinoid dependence.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。