Selective metabolism of hypothiocyanous acid by mammalian thioredoxin reductase promotes lung innate immunity and antioxidant defense

哺乳动物硫氧还蛋白还原酶对次硫氰酸的选择性代谢促进肺的先天免疫和抗氧化防御

阅读:9
作者:Joshua D Chandler, David P Nichols, Jerry A Nick, Robert J Hondal, Brian J Day

Abstract

The endogenously produced oxidant hypothiocyanous acid (HOSCN) inhibits and kills pathogens but paradoxically is well tolerated by mammalian host tissue. Mammalian high molecular weight thioredoxin reductase (H-TrxR) is evolutionarily divergent from bacterial low molecular weight thioredoxin reductase (L-TrxR). Notably, mammalian H-TrxR contains a selenocysteine (Sec) and has wider substrate reactivity than L-TrxR. Recombinant rat cytosolic H-TrxR1, mouse mitochondrial H-TrxR2, and a purified mixture of both from rat selectively turned over HOSCN (kcat = 357 ± 16 min(-1); Km = 31.9 ± 10.3 μM) but were inactive against the related oxidant hypochlorous acid. Replacing Sec with Cys or deleting the final eight C-terminal peptides decreased affinity and turnover of HOSCN by H-TrxR. Similarly, glutathione reductase (an H-TrxR homologue lacking Sec) was less effective at HOSCN turnover. In contrast to H-TrxR and glutathione reductase, recombinant Escherichia coli L-TrxR was potently inhibited by HOSCN (IC50 = 2.75 μM). Similarly, human bronchial epithelial cell (16HBE) lysates metabolized HOSCN, but E. coli and Pseudomonas aeruginosa lysates had little or no activity. HOSCN selectively produced toxicity in bacteria, whereas hypochlorous acid was nonselectively toxic to both bacteria and 16HBE. Treatment with the H-TrxR inhibitor auranofin inhibited HOSCN metabolism in 16HBE lysates and significantly increased HOSCN-mediated cytotoxicity. These findings demonstrate both the metabolism of HOSCN by mammalian H-TrxR resulting in resistance to HOSCN in mammalian cells and the potent inhibition of bacterial L-TrxR resulting in cytotoxicity in bacteria. These data support a novel selective mechanism of host defense in mammals wherein HOSCN formation simultaneously inhibits pathogens while sparing host tissue.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。