Selectivity among Anti-σ Factors by Mycobacterium tuberculosis ClpX Influences Intracellular Levels of Extracytoplasmic Function σ Factors

结核分枝杆菌 ClpX 对抗 σ 因子的选择性影响胞质外功能 σ 因子的细胞内水平

阅读:5
作者:Anuja C Joshi, Prabhjot Kaur, Radhika K Nair, Deepti S Lele, Vinay Kumar Nandicoori, Balasubramanian Gopal

Abstract

Extracytoplasmic function σ factors that are stress inducible are often sequestered in an inactive complex with a membrane-associated anti-σ factor. Mycobacterium tuberculosis membrane-associated anti-σ factors have a small, stable RNA gene A (ssrA)-like degron for targeted proteolysis. Interaction between the unfoldase, ClpX, and a substrate with an accessible degron initiates energy-dependent proteolysis. Four anti-σ factors with a mutation in the degron provided a set of natural substrates to evaluate the influence of the degron on degradation strength in ClpX-substrate processivity. We note that a point mutation in the degron (X-Ala-Ala) leads to an order-of-magnitude difference in the dwell time of the substrate on ClpX. Differences in ClpX/anti-σ interactions were correlated with changes in unfoldase activities. Green fluorescent protein (GFP) chimeras or polypeptides with a length identical to that of the anti-σ factor degron also demonstrate degron-dependent variation in ClpX activities. We show that degron-dependent ClpX activity leads to differences in anti-σ degradation, thereby regulating the release of free σ from the σ/anti-σ complex. M. tuberculosis ClpX activity thus influences changes in gene expression by modulating the cellular abundance of ECF σ factors.IMPORTANCE The ability of Mycobacterium tuberculosis to quickly adapt to changing environmental stimuli occurs by maintaining protein homeostasis. Extracytoplasmic function (ECF) σ factors play a significant role in coordinating the transcription profile to changes in environmental conditions. Release of the σ factor from the anti-σ is governed by the ClpXP2P1 assembly. M. tuberculosis ECF anti-σ factors have an ssrA-like degron for targeted degradation. A point mutation in the degron leads to differences in ClpX-mediated proteolysis and affects the cellular abundance of ECF σ factors. ClpX activity thus synchronizes changes in gene expression with environmental stimuli affecting M. tuberculosis physiology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。