Epithelial Planar Bipolarity Emerges from Notch-Mediated Asymmetric Inhibition of Emx2

上皮平面双极性源于 Notch 介导的 Emx2 不对称抑制

阅读:6
作者:Eva L Kozak, Subarna Palit, Jerónimo R Miranda-Rodríguez, Aleksandar Janjic, Anika Böttcher, Heiko Lickert, Wolfgang Enard, Fabian J Theis, Hernán López-Schier

Abstract

Most plane-polarized tissues are formed by identically oriented cells [1, 2]. A notable exception occurs in the vertebrate vestibular system and lateral-line neuromasts, where mechanosensory hair cells orient along a single axis but in opposite directions to generate bipolar epithelia [3-5]. In zebrafish neuromasts, pairs of hair cells arise from the division of a non-sensory progenitor [6, 7] and acquire opposing planar polarity via the asymmetric expression of the polarity-determinant transcription factor Emx2 [8-11]. Here, we reveal the initial symmetry-breaking step by decrypting the developmental trajectory of hair cells using single-cell RNA sequencing (scRNA-seq), diffusion pseudotime analysis, lineage tracing, and mutagenesis. We show that Emx2 is absent in non-sensory epithelial cells, begins expression in hair-cell progenitors, and is downregulated in one of the sibling hair cells via signaling through the Notch1a receptor. Analysis of Emx2-deficient specimens, in which every hair cell adopts an identical direction, indicates that Emx2 asymmetry does not result from auto-regulatory feedback. These data reveal a two-tiered mechanism by which the symmetric monodirectional ground state of the epithelium is inverted by deterministic initiation of Emx2 expression in hair-cell progenitors and a subsequent stochastic repression of Emx2 in one of the sibling hair cells breaks directional symmetry to establish planar bipolarity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。