Acid activation of Trpv1 leads to an up-regulation of calcitonin gene-related peptide expression in dorsal root ganglion neurons via the CaMK-CREB cascade: a potential mechanism of inflammatory pain

Trpv1 的酸激活通过 CaMK-CREB 级联导致背根神经节神经元中降钙素基因相关肽表达上调:炎症疼痛的潜在机制

阅读:7
作者:Masako Nakanishi, Kenji Hata, Tomotaka Nagayama, Teruhisa Sakurai, Toshihiko Nishisho, Hiroki Wakabayashi, Toru Hiraga, Shigeyuki Ebisu, Toshiyuki Yoneda

Abstract

Increased production of calcitonin gene-related peptide (CGRP) in sensory neurons is implicated in inflammatory pain. The inflammatory site is acidic due to proton release from infiltrating inflammatory cells. Acid activation of peripheral nociceptors relays pain signals to the CNS. Here, we examined whether acid activated the transient receptor potential vanilloid subtype 1 (Trpv1), a widely recognized acid-sensing nociceptor and subsequently increased CGRP expression. Chemically induced inflammation was associated with thermal hyperalgesia and increased CGRP expression in dorsal root ganglion (DRG) in rats. In organ cultures of DRG, acid (pH 5.5) elevated CGRP expression and the selective Trpv1 antagonist 5'-Iodoresiniferatoxin decreased it. Trpv1-deficient DRG showed reduced CGRP increase by acid. Of note, many of CGRP/Trpv1-positive DRG neurons exhibited the phosphorylation of cAMP response element-binding protein (CREB), a nociceptive transcription factor. Knockdown of CREB by small interfering RNA or a dominant-negative form of CREB diminished acid-elevated CGRP expression. Acid elevated the transcriptional activity of CREB, which in turn stimulated CGRP gene promoter activity. These effects were inhibited by a Ca(2+)/calmodulin-dependent protein kinase (CaMK) inhibitor KN-93. In conclusion, our results suggest that inflammatory acidic environments activate Trpv1, leading to an up-regulation of CGRP expression via CaMK-CREB cascade, a series of events that may be associated with inflammatory pain.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。