In vivo high-resolution diffusion tensor imaging of the developing neonatal rat cortex and its relationship to glial and dendritic maturation

发育中的新生大鼠皮质的体内高分辨率扩散张量成像及其与神经胶质和树突成熟的关系

阅读:7
作者:Markus Breu, Dominik Reisinger, Liangcheng Tao, Dan Wu, Yajing Zhang, Matthew D Budde, Ali Fatemi, Arvind P Pathak, Jiangyang Zhang

Abstract

Diffusion tensor imaging (DTI) is increasingly utilized as a sensitive tool for studying brain maturation and injuries during the neonatal period. In this study, we acquired high resolution in vivo DTI data from neonatal rat brains from postnatal day 2 (P2) to P10 and correlated temporal changes in DTI derived markers with microstructural organization of glia, axons, and dendrites during this critical period of brain development. Group average images showed dramatic temporal changes in brain morphology, fractional anisotropy (FA) and mean diffusivity (MD). Most cortical regions showed a monotonous decline in FA and an initial increase in MD from P2 to P8 that declined slightly by P10. Qualitative histology revealed rapid maturation of the glial and dendritic networks in the developing cortex. In the cingulate and motor cortex, the decreases in FA over time significantly correlated with structural anisotropy values computed from histological sections stained with glial and dendritic markers. However, in the sensory and visual cortex, other factors probably contributed to the observed decreases in FA. We did not observe any significant correlations between FA and structural anisotropy computed from the axonal histological marker.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。