A multidimensional toolkit for elucidating temporal trajectories in cell development in vivo

用于阐明体内细胞发育时间轨迹的多维工具包

阅读:5
作者:Masahiro Ono, Tessa Crompton

Abstract

Progenitor cells initiate development upon receiving key signals, dynamically altering gene and protein expression to diverge into various lineages and fates. Despite the use of several experimental approaches, including the Fluorescent Timer-based method Timer-of-cell-kinetics-and-activity (Tocky), analysing time-dependent processes at the single-cell level in vivo remains challenging. This study introduces a novel integrated experimental and computational approach, using an advanced multidimensional toolkit. This toolkit facilitates the simultaneous examination of temporal progression and T-cell profiles using high-dimensional flow cytometric data. Employing novel algorithms based on canonical correspondence analysis and network analysis, our toolkit identifies developmental trajectories and analyses dynamic changes in developing cells. The efficacy of this approach is demonstrated by analysing thymic T cells from Nr4a3-Tocky mice, which monitor activities downstream of the T-cell receptor (TCR) signal. Further validation was achieved by deleting the proapoptotic gene Bcl2l11 in Nr4a3-Tocky mice. This revealed dynamic changes in thymic T cells during cellular development and negative selection following TCR signalling. Overall, this study establishes a new method for analysing the temporal dynamics of individual developing cells in response to in vivo signalling cues.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。