Striatal hub of dynamic and stabilized prediction coding in forebrain networks for olfactory reinforcement learning

嗅觉强化学习前脑网络中动态和稳定预测编码的纹状体中枢

阅读:7
作者:Laurens Winkelmeier, Carla Filosa, Renée Hartig, Max Scheller, Markus Sack, Jonathan R Reinwald, Robert Becker, David Wolf, Martin Fungisai Gerchen, Alexander Sartorius, Andreas Meyer-Lindenberg, Wolfgang Weber-Fahr, Christian Clemm von Hohenberg #, Eleonora Russo #, Wolfgang Kelsch #

Abstract

Identifying the circuits responsible for cognition and understanding their embedded computations is a challenge for neuroscience. We establish here a hierarchical cross-scale approach, from behavioral modeling and fMRI in task-performing mice to cellular recordings, in order to disentangle local network contributions to olfactory reinforcement learning. At mesoscale, fMRI identifies a functional olfactory-striatal network interacting dynamically with higher-order cortices. While primary olfactory cortices respectively contribute only some value components, the downstream olfactory tubercle of the ventral striatum expresses comprehensively reward prediction, its dynamic updating, and prediction error components. In the tubercle, recordings reveal two underlying neuronal populations with non-redundant reward prediction coding schemes. One population collectively produces stabilized predictions as distributed activity across neurons; in the other, neurons encode value individually and dynamically integrate the recent history of uncertain outcomes. These findings validate a cross-scale approach to mechanistic investigations of higher cognitive functions in rodents.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。