Minimizing DNA trapping while maintaining activity inhibition via selective PARP1 degrader

通过选择性PARP1降解剂最大限度地减少DNA捕获,同时保持活性抑制

阅读:6
作者:Li Chen #, Yahui Zou #, Renhong Sun #, Mei Huang, Xiaotong Zhu, Xiao Tang, Xiaobao Yang, Dake Li, Gaofeng Fan, Yu Wang

Abstract

Poly (ADP-ribose) polymerase 1 (PARP1) catalyzes poly (ADP) ribosylation reaction, one of the essential post-translational modifications of proteins in eukaryotic cells. Given that PARP1 inhibition can lead to synthetic lethality in cells with compromised homologous recombination, this enzyme has been identified as a potent target for anti-cancer therapeutics. However, the clinical application of existing PARP1 inhibitors is restrained by side effects associated with DNA trapping and off-target effects, highlighting the need for improved therapeutic strategies. By integrating protein degradation technology, we synthesized a PROTAC molecule 180055 based on the Rucaparib junction and VHL ligand, which efficiently and selectively degraded PARP1 and inhibited PARP1 enzyme activity without a noticeable DNA trapping effect. Furthermore, 180055 kills tumor cells carrying BRCA mutations with a minor impact on the growth of normal cells both in vitro and in vivo. This suggests that 180055 is a PARP1-degrading compound with excellent pharmacological efficacy and extremely high biological safety that deserves further exploration and validation in clinical trials.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。