Potential protective effect of 3,3'-methylenebis(1-ethyl-4-hydroxyquinolin-2(1H)-one) against bleomycin-induced lung injury in male albino rat via modulation of Nrf2 pathway: biochemical, histological, and immunohistochemical study

3,3'-亚甲基双(1-乙基-4-羟基喹啉-2(1H)-酮)通过调节 Nrf2 通路对雄性白化大鼠博来霉素诱发肺损伤的潜在保护作用:生化、组织学和免疫组织化学研究

阅读:7
作者:Sara Mohamed Naguib Abdel Hafez, Entesar Ali Saber, Neven Makram Aziz, Maha Yehia Kamel, Ashraf A Aly, El-Shimaa M N Abdelhafez, Manar Fouli Gaber Ibrahim

Abstract

Acute lung injury is a serious condition accounting for the majority of acute respiratory failure. Bleomycin (BLM) is an antibiotic that was first described as a chemotherapeutic agent. 3,3'-methylenebis(1-ethyl-4-hydroxyquinolin-2(1H)-one) was reported to have anti-inflammatory, anti-apoptotic, and anti-oxidative properties. The current work aimed to assess the possible protective effects and the mechanism of protection of 3,3'-methylenebis-(1-ethyl-4-hydroxyquinolin-2(1H)-one) on BLM-induced lung injury in addition to the effect and underlying mechanisms of nuclear factor-erythroid-related factor 2 pathway against this injury. Rats were equally divided into four groups: control group, BLM group, 1-ethyl-4-hydroxyquinolin-2(1H)-one-treated group, and BLM with 1-ethyl-4-hydroxyquinolin-2(1H)-one-treated group. At the end of the work, the blood samples were proceeded for biochemical study. Lung specimens were obtained for biochemical, histological, and immunohistochemical study. The results exhibited a significant increase in both malondialdehyde and tumor necrotic factor-α with a significant decrease in glutathione, superoxide dismutase, IL 10, surfactant protein A, and nuclear factor erythroid 2-related factor 2 in BLM group. The lung histological results showed various morphological changes in the form of disturbed architecture, inflammatory cell infiltration, and intraluminal debris. This group also displayed a significant increase in the mean surface area fraction of anti-cleaved caspase 3, while group IV exhibited amelioration in the previously mentioned parameters and histological alternations that were induced by BLM. It could be concluded that 3,3'-methylenebis(1-ethyl-4-hydroxyquinolin-2(1H)-one) has anti-oxidative, anti-inflammatory, and anti-apoptotic protective effects against BLM-induced lung injury.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。