High-level expression of glycoprotein D by a dominant-negative HSV-1 virus augments its efficacy as a vaccine against HSV-1 infection

显性负性 HSV-1 病毒高水平表达糖蛋白 D,增强了其作为 HSV-1 感染疫苗的功效

阅读:10
作者:Zheming Lu, Richard Brans, Natali V Akhrameyeva, Nao Murakami, Ximing Xu, Feng Yao

Abstract

Using the T-REx (Invitrogen, Carlsbad, CA) gene switch technology, we previously generated a dominant-negative herpes simplex virus (HSV)-1 recombinant, CJ83193, capable of inhibiting its own replication as well as that of wild-type HSV-1 and HSV-2. It has been further demonstrated that CJ83193 is an effective vaccine against HSV-1 infection in a mouse ocular model. To ensure its safety and augment its efficacy, we generated an improved CJ83193-like HSV-1 recombinant, CJ9-gD, which contains a deletion in an HSV-1 essential gene and encodes an extra copy of gene-encoding glycoprotein D (gD) driven by the tetO-bearing human cytomegalovirus major immediate-early promoter. Unlike CJ83193, which exhibits limited plaque-forming capability in Vero cells and expresses little gD in infected cells, CJ9-gD is completely replication defective, yields high-level expression of gD following infection, and cannot establish detectable infection in mouse trigeminal ganglia following intranasal and ocular inoculation. Mice immunized with CJ9-gD produced 3.5-fold higher HSV-1 neutralizing antibody titer than CJ83193-immunized mice, and were completely protected from herpetic ocular disease following corneal challenge with wild-type HSV-1. Moreover, immunization of mice with CJ9-gD elicited a strong HSV-1-specific T-cell response and led to an 80% reduction in latent infection by challenge wild-type HSV-1 compared with the mock-immunized control.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。