A Multiplex PCR Melting-Curve-Analysis-Based Detection Method for the Discrimination of Five Aspergillus Species

基于多重 PCR 熔解曲线分析的五种曲霉菌鉴别检测方法

阅读:9
作者:Maria Tokamani, Eleftheria Figgou, Lito Papamichail, Eleni Sakka, Athanasios Toros, Anastasia Bouchorikou, Antonis Giannakakis, Efthymia Iliana Matthaiou, Raphael Sandaltzopoulos

Abstract

Aspergillus mold is a ubiquitously found, airborne pathogen that can cause a variety of diseases from mild to life-threatening in severity. Limitations in diagnostic methods combined with anti-fungal resistance render Aspergillus a global emerging pathogen. In industry, Aspergilli produce toxins, such as aflatoxins, which can cause food spoilage and pose public health risk issues. Here, we report a multiplex qPCR method for the detection and identification of the five most common pathogenic Aspergillus species, Aspergillus fumigatus, Aspergillus flavus, Aspergillus niger, Aspergillus terreus, and Aspergillus nidulans. Our approach exploits species-specific nucleotide polymorphisms within their ITS genomic regions. This novel assay combines multiplex single-color real time qPCR and melting curve analysis and provides a straight-forward, rapid, and cost-effective detection method that can identify five Aspergillus species simultaneously in a single reaction using only six unlabeled primers. Due to their unique fragment lengths, the resulting amplicons are directly linked to certain Aspergillus species like fingerprints, following either electrophoresis or melting curve analysis. Our method is characterized by high analytical sensitivity and specificity, so it may serve as a useful and inexpensive tool for Aspergillus diagnostic applications both in health care and the food industry.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。