Background
Abnormal endothelial shear stress (ESS) is a significant risk factor for atherosclerosis (AS); however, the genes and pathways between ESS and AS are poorly understood. Here, we screened hub genes and potential regulatory targets linked to the progression of AS induced by abnormal ESS.
Conclusion
We identified CCRL2, LGALS9, and PLCB2 as key genes associated with abnormal ESS and AS and may provide potential prevention and treatment target of AS induced by abnormal ESS.
Methods
The microarray data of ESS and AS were downloaded from the Gene Expression Omnibus (GEO) database. The coexpression modules related to shear stress and AS were identified with weighted gene coexpression network analysis (WGCNA). Coexpression genes in modules obtained from GSE28829 and GSE160611 were considered as SET1. The
Results
We identified three gene modules (the blue, tan, and cyan modules) related to AS and three shear stress-related modules (the brown, red, and pink modules). A total of 129 genes in SET1 and 476 genes in SET2 were identified. CCRL2, LGALS9, and PLCB2 were identified as common hub genes and validated in the GSE100927, GSE28829, and GSE41571. ROC analysis indicates the expression of CCRL2, LGALS9, and PLCB2 could effectively distinguish the atherosclerotic plaque and normal arterial. The expression level of CCRL2, LGALS9, and PLCB2 increases with the accumulation of lipid increased.
