Regulation of cell growth during serum starvation and bacterial survival in macrophages by the bifunctional enzyme SpoT in Helicobacter pylori

幽门螺杆菌双功能酶 SpoT 对血清饥饿期间细胞生长和巨噬细胞中细菌存活的调节

阅读:7
作者:Yan Ning Zhou, William G Coleman Jr, Zhaoxu Yang, Yi Yang, Nathaniel Hodgson, Fuxiang Chen, Ding Jun Jin

Abstract

In Helicobacter pylori the stringent response is mediated solely by spoT. The spoT gene is known to encode (p)ppGpp synthetase activity and is required for H. pylori survival in the stationary phase. However, neither the hydrolase activity of the H. pylori SpoT protein nor the role of SpoT in the regulation of growth during serum starvation and intracellular survival of H. pylori in macrophages has been determined. In this study, we examined the effects of SpoT on these factors. Our results showed that the H. pylori spoT gene encodes a bifunctional enzyme with both a hydrolase activity and the previously described (p)ppGpp synthetase activity, as determined by introducing the gene into Escherichia coli relA and spoT defective strains. Also, we found that SpoT mediates a serum starvation response, which not only restricts the growth but also maintains the helical morphology of H. pylori. Strikingly, a spoT null mutant was able to grow to a higher density in serum-free medium than the wild-type strain, mimicking the "relaxed" growth phenotype of an E. coli relA mutant during amino acid starvation. Finally, SpoT was found to be important for intracellular survival in macrophages during phagocytosis. The unique role of (p)ppGpp in cell growth during serum starvation, in the stress response, and in the persistence of H. pylori is discussed.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。