Boosting Mitochondrial Biogenesis Diminishes Foam Cell Formation in the Post-Stroke Brain

促进线粒体的生物合成可减少中风后大脑中的泡沫细胞形成

阅读:12
作者:Sanna H Loppi, Marco A Tavera-Garcia, Natalie E Scholpa, Boaz K Maiyo, Danielle A Becktel, Helena W Morrison, Rick G Schnellmann, Kristian P Doyle

Abstract

Following ischemic stroke, the degradation of myelin and other cellular membranes surpasses the lipid-processing capabilities of resident microglia and infiltrating macrophages. This imbalance leads to foam cell formation in the infarct and areas of secondary neurodegeneration, instigating sustained inflammation and furthering neurological damage. Given that mitochondria are the primary sites of fatty acid metabolism, augmenting mitochondrial biogenesis (MB) may enhance lipid processing, curtailing foam cell formation and post-stroke chronic inflammation. Previous studies have shown that the pharmacological activation of the β2-adrenergic receptor (β2-AR) stimulates MB. Consequently, our study sought to discern the effects of intensified β2-AR signaling on MB, the processing of brain lipid debris, and neurological outcome using a mouse stroke model. To achieve this goal, aged mice were treated with formoterol, a long-acting β2-AR agonist, daily for two and eight weeks following stroke. Formoterol increased MB in the infarct region, modified fatty acid metabolism, and reduced foam cell formation. However, it did not reduce markers of post-stroke neurodegeneration or improve recovery. Although our findings indicate that enhancing MB in myeloid cells can aid in the processing of brain lipid debris after stroke, it is important to note that boosting MB alone may not be sufficient to significantly impact stroke recovery.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。