Rapidly dissolving bilayer microneedles enabling minimally invasive and efficient protein delivery to the posterior segment of the eye

快速溶解的双层微针能够以微创且高效的方式将蛋白质输送至眼后节

阅读:6
作者:Yu Wu, Lalitkumar K Vora, Ryan F Donnelly, Thakur Raghu Raj Singh

Abstract

The discovery of proteins that neutralise vascular endothelial growth factors, such as pegaptanib, ranibizumab and aflibercept, can inhibit the process of angiogenesis, thereby restoring eyesight in individuals with retinal vascular disorders. However, due to the posterior location and chronic nature of retinal diseases, a safe and effective intraocular protein delivery system is currently lacking. Thus, dissolving bilayer microneedles (MNs) with the potential to deliver proteins to the back of the eye in an efficient and minimally invasive manner were developed in this study. A model protein, ovalbumin (OVA), was incorporated into MNs fabricated from different polymers, including hyaluronic acid (HA), polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP). Optimised PVA/PVP MNs were demonstrated to be robust enough to pierce porcine sclera with > 75% of the needle length penetrating the sclera and dissolving within 150 s. SDS-PAGE and OVA-specific ELISA revealed that the bioactivity of the model protein was maintained during the manufacture of MNs. In hen's egg-chorioallantoic membrane test, MNs fabricated from all chosen polymers were classified as non-irritants. Furthermore, ex vivo permeation studies showed that optimised MNs could permeate 86.99 ± 7.37% of OVA through the sclera, twice that of the needle-free patch (42.16 ± 3.95%), highlighting the capability of MNs to circumvent physical barriers and promote protein delivery to the posterior segment of the eye. In this work, a novel, efficient and safe intraocular protein delivery system was successfully established.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。