SMURF1-Induced Ubiquitination of FTH1 Disrupts Iron Homeostasis and Suppresses Myogenesis

SMURF1 诱导的 FTH1 泛素化破坏铁稳态并抑制肌肉生成

阅读:9
作者:Xia Xiong, Wen Li, Chunlin Yu, Mohan Qiu, Zengrong Zhang, Chenming Hu, Shiliang Zhu, Li Yang, Han Pen, Xiaoyan Song, Jialei Chen, Bo Xia, Shunshun Han, Chaowu Yang

Abstract

Ferritin heavy chain 1 (FTH1) is pivotal in the storage, release, and utilization of iron, plays a crucial role in the ferroptosis pathway, and exerts significant impacts on various diseases. Iron influences skeletal muscle development and health by promoting cell growth, ensuring energy metabolism and ATP synthesis, maintaining oxygen supply, and facilitating protein synthesis. However, the precise molecular mechanisms underlying iron's regulation of skeletal muscle growth and development remain elusive. In this study, we demonstrated that the conditional knockout (cKO) of FTH1 in skeletal muscle results in muscle atrophy and impaired exercise endurance. In vitro studies using FTH1 cKO myoblasts revealed notable decreases in GSH concentrations, elevated levels of lipid peroxidation, and the substantial accumulation of Fe2+, collectively implying the induction of ferroptosis. Mechanistically, E3 ubiquitin-protein ligase SMURF1 (SMURF1) acts as an E3 ubiquitin ligase for FTH1, thereby facilitating the ubiquitination and subsequent degradation of FTH1. Consequently, this activation of the ferroptosis pathway by SMURF1 impedes myoblast differentiation into myotubes. This study identifies FTH1 as a novel regulator of muscle cell differentiation and skeletal muscle development, implicating its potential significance in maintaining skeletal muscle health through the regulation of iron homeostasis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。