Structural basis of Notch O-glucosylation and O-xylosylation by mammalian protein-O-glucosyltransferase 1 (POGLUT1)

哺乳动物蛋白质-O-葡萄糖基转移酶 1 (POGLUT1) 的 Notch O-葡萄糖基化和 O-木糖基化的结构基础

阅读:9
作者:Zhijie Li, Michael Fischer, Malathy Satkunarajah, Dongxia Zhou, Stephen G Withers, James M Rini

Abstract

Protein O-glucosyltransferase 1/Rumi-mediated glucosylation of Notch epidermal growth factor-like (EGF-like) domains plays an important role in Notch signaling. Protein O-glucosyltransferase 1 shows specificity for folded EGF-like domains, it can only glycosylate serine residues in the C1XSXPC2 motif, and it possesses an uncommon dual donor substrate specificity. Using several EGF-like domains and donor substrate analogs, we have determined the structures of human Protein O-glucosyltransferase 1 substrate/product complexes that provide mechanistic insight into the basis for these properties. Notably, we show that Protein O-glucosyltransferase 1's requirement for folded EGF-like domains also leads to its serine specificity and that two distinct local conformational states are likely responsible for its ability to transfer both glucose and xylose. We also show that Protein O-glucosyltransferase 1 possesses the potential to xylosylate a much broader range of EGF-like domain substrates than was previously thought. Finally, we show that Protein O-glucosyltransferase 1 has co-evolved with EGF-like domains of the type found in Notch.POGLUT1 is a protein-O-glucosyltransferase that transfers glucose and xylose to the EGF-like domains of Notch and other signaling receptors. Here the authors report the structure of human POGLUT1 in complexes with 3 different EGF-like domains and donor substrates and shed light on the enzyme's substrate specificity and catalytic mechanism.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。