Lon protease 1-mediated metabolic reprogramming promotes the progression of prostate cancer

Lon蛋白酶1介导的代谢重编程促进前列腺癌的进展

阅读:4
作者:Mengfei Yao #, Xingming Zhang #, Tianqi Wu, Tao Feng, Xiaojie Bian, Mierxiati Abudurexiti, Wenfeng Wang, Guohai Shi, Gong-Hong Wei, Qin Zhang, Xiangyun Li, Gang Feng, Leilei Du, Jianhua Wang2

Abstract

Lon protease 1 (LONP1) is an ATP-dependent protease located in the mitochondrial matrix and plays a crucial role in regulating mitochondrial proteostasis, metabolism, and cellular stress responses et al. Aberrant LONP1 expression has been found in the progression of various tumors; however, the role and molecular mechanisms of LONP1 in prostate cancer (PCa) remain poorly understood. Here we show that overexpression of LONP1 is closely related to adverse clinic pathological features and poor prognosis in PCa patients. Mechanistically, the findings reveal that LONP1 is implicated in modulating the metabolic switch from oxidative phosphorylation (OXPHOS) to aerobic glycolysis, thereby promoting tumor proliferation, invasion, and metastasis both in vitro and in vivo. Meanwhile, we prove that LONP1 as a protease directly targets mitochondrial pyruvate carrier 1 (MPC1), a key metabolic protein in the process of glycolysis, and enhances its degradation, which in turn suppresses tricarboxylic acid (TCA) cycle and ultimately promotes the progression of PCa. Furthermore, using PCa in cancer-prone mice homozygous for a prostate-targeted conditional Pten knockout and Lonp1 knockin, we integrate transcriptomic and proteomic analyses of prostate tumors, upon which reveals that Lonp1 overexpression results in a significant downregulation of NADH: ubiquinone oxidoreductase activity, consequently impeding the electron transfer process and mitochondrial ATP synthesis, associated with metastasis of PCa. Collectively, our results highlight that metabolic reprogramming induced by LONP1 in PCa is closely coupled with disease progression, suggesting that targeting the LONP1-mediated cascade in the mitochondrial may provide therapeutic potential for PCa disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。