beta1 integrin cytoplasmic domain residues selectively modulate fibronectin matrix assembly and cell spreading through talin and Akt-1

β1整合素胞质域残基通过talin和Akt-1选择性地调节纤连蛋白基质组装和细胞扩散

阅读:6
作者:J Angelo Green, Allison L Berrier, Roumen Pankov, Kenneth M Yamada

Abstract

The integrin beta(1) cytoplasmic domain (tail) serves as a scaffold for numerous intracellular proteins. The mechanisms by which the tail coordinates these proteins to facilitate extracellular matrix assembly and cell spreading are not clear. This study demonstrates that the beta(1) cytoplasmic domain can regulate cell spreading on fibronectin and fibronectin matrix assembly through Akt- and talin-dependent mechanisms, respectively. To identify these mechanisms, we characterized GD25 cells expressing the beta(1) integrin cytoplasmic domain mutants W775A and R760A. Although cell spreading appears normal in R760A mutant-integrin cells compared with wild type, it is inhibited in W775A mutant cells. In contrast, both mutant cell lines show defective fibronectin matrix assembly. Inhibition of cell spreading, but not matrix assembly, in the W775A mutant cells is due to a specific defect in Akt-1 activation. In addition, we find that both W775A and R760A mutant integrins have reduced surface expression of the 9EG7 epitope that correlates with reduced recruitment of talin to beta(1) integrin cytoplasmic complexes. Down-regulation of talin with small interfering RNA or expression of green fluorescent protein-talin head domain inhibits matrix assembly in beta(1) wild-type cells, mimicking the defect seen with the W775A and R760A mutant cells. These results demonstrate distinct mechanisms by which integrins regulate cell spreading and matrix assembly through the beta(1) integrin cytoplasmic tail.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。