Mustard gas exposure instigates retinal Müller cell gliosis

芥子气暴露引发视网膜穆勒细胞神经胶质增生

阅读:6
作者:Binapani Mahaling, Nishant R Sinha, Sibabalo Sokupa, Utkarsh Reddy Addi, Rajiv R Mohan, Shyam S Chaurasia

Abstract

Sulfur mustard (SM) is a chemical warfare agent (CWA) that causes severe eye pain, photophobia, excessive lacrimation, corneal and ocular surface defects, and blindness. However, SM's effects on retinal cells are relatively meager. This study investigated the role of SM toxicity on Müller glial cells responsible for cellular architecture, inner blood-retinal barrier maintenance, neurotransmitter recycling, neuronal survival, and retinal homeostasis. Müller glial cells (MIO-M1) were exposed to SM analog, nitrogen mustard (NM), at varying concentrations (50-500 μM) for 3 h, 24 h, and 72 h. Müller cell gliosis was evaluated using morphological, cellular, and biochemical methods. Real-time cellular integrity and morphological evaluation were performed using the xCELLigence real-time monitoring system. Cellular viability and toxicity were measured using TUNEL and PrestoBlue assays. Müller glia hyperactivity was calculated based on glial fibrillary acidic protein (GFAP) and vimentin immunostaining. Intracellular oxidative stress was measured using DCFDA and DHE cell-based assays. Inflammatory markers and antioxidant enzyme levels were determined by quantitative real-time PCR (qRT-PCR). AO/Br and DAPI staining further evaluated DNA damage, apoptosis, necrosis, and cell death. Inflammasome-associated Caspase-1, ASC, and NLRP3 were studied to identify mechanistic insights into NM toxicity in Müller glial cells. The cellular and morphological evaluation revealed the Müller glia hyperactivity after NM exposure in a dose- and time-dependent manner. NM exposure caused significant oxidative stress and enhanced cell death at 72 h. A significant increase in antioxidant indices was observed at the lower concentrations of NM. Mechanistically, we found that NM-treated MIO-M1 cells increased caspase-1 levels that activated NLRP3 inflammasome-induced production of IL-1β and IL-18, and elevated Gasdermin D (GSDMD) expression, a crucial component actuating pyroptosis. In conclusion, NM-induced Müller cell gliosis via increased oxidative stress results in caspase-1-dependent activation of the NLRP3 inflammasome and cell death driven primarily by pyroptosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。