Identification of Risk Loci for Radiotoxicity in Prostate Cancer by Comprehensive Genotyping of TGFB1 and TGFBR1

通过对 TGFB1 和 TGFBR1 进行综合基因分型来识别前列腺癌放射毒性风险位点

阅读:7
作者:Manuel Guhlich, Laura Hubert, Caroline Patricia Nadine Mergler, Margret Rave-Fraenk, Leif Hendrik Dröge, Martin Leu, Heinz Schmidberger, Stefan Rieken, Andrea Hille, Markus Anton Schirmer

Abstract

Genetic variability in transforming growth factor beta pathway (TGFB) was suggested to affect adverse events of radiotherapy. We investigated comprehensive variability in TGFB1 (gene coding for TGFβ1 ligand) and TGFBR1 (TGFβ receptor-1) in relation to radiotoxicity. Prostate cancer patients treated with primary radiotherapy (n = 240) were surveyed for acute and late toxicity. Germline polymorphisms (n = 40) selected to cover the common genetic variability in TGFB1 and TGFBR1 were analyzed in peripheral blood cells. Human lymphoblastoid cell lines (LCLs) were used to evaluate a possible impact of TGFB1 and TGFBR1 genetic polymorphisms to DNA repair capacity following single irradiation with 3 Gy. Upon adjustment for multiplicity testing, rs10512263 in TGFBR1 showed a statistically significant association with acute radiation toxicity. Carriers of the Cytosine (C)-variant allele (n = 35) featured a risk ratio of 2.17 (95%-CI 1.41-3.31) for acute toxicity ≥ °2 compared to Thymine/Thymine (TT)-wild type individuals (n = 205). Reduced DNA repair capacity in the presence of the C-allele of rs10512263 might be a mechanistic explanation as demonstrated in LCLs following irradiation. The risk for late radiotoxicity was increased by carrying at least two risk genotypes at three polymorphic sites, including Leu10Pro in TGFB1. Via comprehensive genotyping of TGFB1 and TGFBR1, promising biomarkers for radiotoxicity in prostate cancer were identified.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。