Clock Regulation of Metabolites Reveals Coupling between Transcription and Metabolism

代谢物的时钟调节揭示转录和代谢之间的耦合

阅读:4
作者:Saikumari Y Krishnaiah, Gang Wu, Brian J Altman, Jacqueline Growe, Seth D Rhoades, Faith Coldren, Anand Venkataraman, Anthony O Olarerin-George, Lauren J Francey, Sarmistha Mukherjee, Saiveda Girish, Christopher P Selby, Sibel Cal, Ubeydullah Er, Bahareh Sianati, Arjun Sengupta, Ron C Anafi, I Halil

Abstract

The intricate connection between the circadian clock and metabolism remains poorly understood. We used high temporal resolution metabolite profiling to explore clock regulation of mouse liver and cell-autonomous metabolism. In liver, ∼50% of metabolites were circadian, with enrichment of nucleotide, amino acid, and methylation pathways. In U2 OS cells, 28% were circadian, including amino acids and NAD biosynthesis metabolites. Eighteen metabolites oscillated in both systems and a subset of these in primary hepatocytes. These 18 metabolites were enriched in methylation and amino acid pathways. To assess clock dependence of these rhythms, we used genetic perturbation. BMAL1 knockdown diminished metabolite rhythms, while CRY1 or CRY2 perturbation generally shortened or lengthened rhythms, respectively. Surprisingly, CRY1 knockdown induced 8 hr rhythms in amino acid, methylation, and vitamin metabolites, decoupling metabolite from transcriptional rhythms, with potential impact on nutrient sensing in vivo. These results provide the first comprehensive views of circadian liver and cell-autonomous metabolism.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。