miR-16-5p/PDK4-Mediated Metabolic Reprogramming Is Involved in Chemoresistance of Cervical Cancer

miR-16-5p/PDK4 介导的代谢重编程与宫颈癌化学耐药性有关

阅读:4
作者:Zhao Zhao, Mei Ji, Qianqing Wang, Nannan He, Yue Li

Abstract

Cervical cancer is one of the most prevalent malignancies in women worldwide. Therefore, investigation about molecular pathogenesis and related therapy targets of cervical cancer is an emergency. The molecular mechanisms responsible for the chemoresistance of cervical cancer were investigated by the use of doxorubicin (Dox)-resistant HeLa/Dox and SiHa/Dox cells. Our data showed that chemoresistant cells exhibited significantly higher glucose consumption, lactate production rate, and ATP levels than that of their parental cells. Among metabolic and glycolytic related genes, the expression of PDK4 was upregulated in Dox-resistant cells. Knockdown of PDK4 can decrease glucose consumption, lactate production rate, and ATP levels and further sensitize resistant cervical cancer cells to Dox treatment. By screening microRNAs (miRNAs), which can regulate expression of PDK4, we found that miR-16-5p was downregulated in chemoresistant cells. Overexpression of miR-16-5p can decrease the expression of PDK4 and sensitize the resistant cells to Dox treatment. Xenograft models confirmed that knockdown of PDK4 can increase chemotherapy efficiency for in vivo tumor growth. Collectively, our data suggested that miR-16-5p/PDK4-mediated metabolic reprogramming is involved in chemoresistance of cervical cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。