Eight Aging-Related Genes Prognostic Signature for Cervical Cancer

宫颈癌的八个衰老相关基因预后特征

阅读:2
作者:Meilin Yin ,Yanhua Weng

Abstract

This study searched for aging-related genes (ARGs) to predict the prognosis of patients with cervical cancer (CC). All data were obtained from Molecular Signatures Database, Cancer Genome Atlas, Gene Expression Integration, and Genotype Organization Expression. The R software was used to screen out the differentially expressed ARGs (DE-ARGs) between CC and normal tissues. A protein-protein interaction network was established by the DE-ARGs. The univariate and multivariate Cox regression analyses were conducted on the first extracted Molecular Complex Detection component, and a prognostic model was constructed. The prognostic model was further validated in the testing set and GSE44001 dataset. Prognosis was analyzed by Kaplan-Meier curves, and accuracy of the prognostic model was assessed by receiver operating characteristic area under the curve analysis. An independent prognostic analysis of risk score and some clinicopathological factors of CC was also performed. The copy-number variant (CNV) and single-nucleotide variant (SNV) of prognostic ARGs were analyzed by the BioPortal database. A clinical practical nomogram was established to predict individual survival probability. Finally, we carried out cell experiment to further verify the prognostic model. An eight-ARG prognostic signature for CC was constructed. High-risk CC patients had significantly shorter overall survival than low-risk patients. The receiver operating characteristic (ROC) curve validated the good performance of the signature in survival prediction. The Figo_stage and risk score served as independent prognostic factors. The eight ARGs mainly enriched in growth factor regulation and cell cycle pathway, and the deep deletion of FN1 was the most common CNV. An eight-ARG prognostic signature for CC was successfully constructed.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。