Transcription-mediated organization of the replication initiation program across large genes sets common fragile sites genome-wide

转录介导的复制起始程序在大型基因组中组织常见的脆性位点

阅读:6
作者:Olivier Brison, Sami El-Hilali, Dana Azar, Stéphane Koundrioukoff, Mélanie Schmidt, Viola Nähse, Yan Jaszczyszyn, Anne-Marie Lachages, Bernard Dutrillaux, Claude Thermes, Michelle Debatisse, Chun-Long Chen4

Abstract

Common fragile sites (CFSs) are chromosome regions prone to breakage upon replication stress known to drive chromosome rearrangements during oncogenesis. Most CFSs nest in large expressed genes, suggesting that transcription could elicit their instability; however, the underlying mechanisms remain elusive. Genome-wide replication timing analyses here show that stress-induced delayed/under-replication is the hallmark of CFSs. Extensive genome-wide analyses of nascent transcripts, replication origin positioning and fork directionality reveal that 80% of CFSs nest in large transcribed domains poor in initiation events, replicated by long-travelling forks. Forks that travel long in late S phase explains CFS replication features, whereas formation of sequence-dependent fork barriers or head-on transcription-replication conflicts do not. We further show that transcription inhibition during S phase, which suppresses transcription-replication encounters and prevents origin resetting, could not rescue CFS stability. Altogether, our results show that transcription-dependent suppression of initiation events delays replication of large gene bodies, committing them to instability.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。