Background
Brassica vegetable consumption may confer a protective effect against cancer, possibly attributable to their glucosinolates. Glucobrassicin is a predominant glucosinolate and is the precursor of indole-3-carbinol (I3C), a compound with anticancer effects. However,
Conclusion
We have successfully quantified urinary DIM after uptake of I3C from food, and demonstrated that differences in glucobrassicin exposure are reflected in urinary DIM levels. Impact: Our LC-ESI-MS/MS-SRM method and the results of our study indicate urinary DIM is a measure of I3C uptake from Brassica vegetables, a finding that can be utilized in prospective epidemiologic and chemoprevention studies.
Methods
We conducted a randomized, crossover trial to test whether 3,3'-diindolylmethane (DIM, a metabolite of I3C) excreted in the urine after consumption of raw Brassica vegetables with divergent glucobrassicin concentrations is a marker of I3C uptake from such foods. Twenty-five subjects were fed 50 g of either raw "Jade Cross" Brussels sprouts (high glucobrassicin concentration) or "Blue Dynasty" cabbage (low glucobrassicin concentration) once daily for 3 days. All urine was collected for 24 hours after vegetable consumption each day. After a washout period, subjects crossed over to the alternate vegetable. Urinary DIM was measured using a novel liquid chromatography-electrospray ionization-tandem mass spectrometry-selected reaction monitoring (LC-ESI-MS/MS-SRM) method with [(2)H2]DIM as internal standard.
Results
Urinary DIM was consistently and significantly higher after Brussels sprouts feeding than after cabbage feeding, as evidenced by an average difference of 8.73 pmol/mg creatinine (95% confidence interval, 5.36-12.10; P = 0.00002).
