Preparation of bilayer tissue-engineered polyurethane/poly-L-lactic acid nerve conduits and their in vitro characterization for use in peripheral nerve regeneration

双层组织工程聚氨酯/聚L-乳酸神经导管的制备及其在周围神经再生中的体外表征

阅读:9
作者:Mehran Nabipour, Amir Mellati, Mozhgan Abasi, Somayeh Ebrahimi Barough, Ayoob Karimizade, Parnian Banikarimi, Elham Hasanzadeh

Background

Due to loss of peripheral nerve structure and/or function resulting from trauma, accidents, and other causes, peripheral nerve injuries continue to be a major clinical problem. These injuries can cause partial or total loss of sensory, motor, and autonomic capabilities as well as neuropathic pain. PNI affects between 13 and 23 out of every 100,000 people annually in developed countries. Regeneration of damaged nerves and restoration of function after peripheral nerve injury remain significant therapeutic challenges. Although autologous nerve graft transplantation is a viable therapy option in several clinical conditions, donor site morbidity and a lack of donor tissue often hinder full functional recovery. Biomimetic conduits used in tissue engineering to encourage and direct peripheral nerve regeneration by providing a suitable microenvironment for nerve ingrowth are only one example of the cutting-edge

Conclusions

According to an in vitro study, electrospun bilayer PLA/PU/MWCNT scaffolds can encourage the adhesion and proliferation of human endometrial stem cells (hEnSCs) and create the ideal environment for increasing cell survival.

Methods

In this study, we have produced bilayer nanofibrous nerve conduit based on poly-lactic acid/polyurethane/multiwall carbon nanotube (PLA/PU/MWCNT), for application as composite scaffolds for static nerve tissue engineering. The contact angle was indicated to show the hydrophilicity properties of electrospun nanofibers. The SEM images were analyzed to determine the fiber's diameters, scaffold morphology, and endometrial stem cell adhesion. Moreover, MTT assay and DAPI staining were used to show the viability and proliferation of endometrial stem cells.

Results

The constructed bilayer PLA/PU/MWCNT scaffolds demonstrated the capacity to support cell attachment, and the vitality of samples was assessed using SEM, MTT assay, and DAPI staining technique. Conclusions: According to an in vitro study, electrospun bilayer PLA/PU/MWCNT scaffolds can encourage the adhesion and proliferation of human endometrial stem cells (hEnSCs) and create the ideal environment for increasing cell survival.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。