Structural characterization of Myxococcus xanthus MglC, a component of the polarity control system, and its interactions with its paralog MglB

极性控制系统组成部分 Myxococcus xanthus MglC 的结构表征及其与旁系同源物 MglB 的相互作用

阅读:6
作者:Srajan Kapoor, Akriti Kodesia, Nidhi Kalidas, Ashish, Krishan Gopal Thakur

Abstract

The δ-proteobacteria Myxococcus xanthus displays social (S) and adventurous (A) motilities, which require pole-to-pole reversal of the motility regulator proteins. Mutual gliding motility protein C (MglC), a paralog of GTPase-activating protein Mutual gliding motility protein B (MglB), is a member of the polarity module involved in regulating motility. However, little is known about the structure and function of MglC. Here, we determined ∼1.85 Å resolution crystal structure of MglC using Selenomethionine Single-wavelength anomalous diffraction. The crystal structure revealed that, despite sharing <9% sequence identity, both MglB and MglC adopt a Regulatory Light Chain 7 family fold. However, MglC has a distinct ∼30° to 40° shift in the orientation of the functionally important α2 helix compared with other structural homologs. Using isothermal titration calorimetry and size-exclusion chromatography, we show that MglC binds MglB in 2:4 stoichiometry with submicromolar range dissociation constant. Using small-angle X-ray scattering and molecular docking studies, we show that the MglBC complex consists of a MglC homodimer sandwiched between two homodimers of MglB. A combination of size-exclusion chromatography and site-directed mutagenesis studies confirmed the MglBC interacting interface obtained by molecular docking studies. Finally, we show that the C-terminal region of MglB, crucial for binding its established partner MglA, is not required for binding MglC. These studies suggest that the MglB uses distinct interfaces to bind MglA and MglC. Based on these data, we propose a model suggesting a new role for MglC in polarity reversal in M. xanthus.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。