Effects of solvent deposited enhancers on transdermal permeation and their relationship with Emax

溶剂沉积促进剂对透皮渗透的影响及其与Emax的关系

阅读:6
作者:Sarah A Ibrahim, S Kevin Li

Abstract

Many topical pharmaceuticals such as aerosols, topical sprays, and hydro-alcoholic and polymer based gels contain chemical enhancers. The objectives of the present study were to (a) determine the enhancement effects induced by enhancers deposited from a volatile solvent on human epidermal membrane (HEM) upon transdermal permeation enhancement, (b) compare these enhancement factors with Emax, and (c) examine the relationship between enhancer-induced permeation enhancement and stratum corneum equilibrium uptake enhancement. In this study, HEM was treated with enhancer/ethanol (enhancer dissolved in ethanol). After the evaporation of ethanol, passive transport experiments were conducted using corticosterone (CS) as the model permeant. The uptake of another model corticosteroid, estradiol (E2beta), into the intercellular lipid domain of stratum corneum after enhancer/ethanol treatment was also determined. The results show a correlation between Emax and the enhancement effect of most enhancers when the enhancers were deposited on the skin using the volatile solvent ethanol. The data suggest that the CS transport rate limiting domain was likely the same as the intercellular lipid domain probed by E2beta uptake. The correlation between steady-state permeation enhancement and uptake enhancement into the intercellular lipid domain suggests that the permeation enhancement mechanism is primarily due to enhancement of permeant partitioning into the transport rate limiting domain.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。