Pseudomonas aeruginosa N-3-Oxo-Dodecanoyl-Homoserine Lactone Impacts Mitochondrial Networks Morphology, Energetics, and Proteome in Host Cells

铜绿假单胞菌 N-3-氧代十二酰高丝氨酸内酯对宿主细胞线粒体网络形态、能量学和蛋白质组的影响

阅读:6
作者:Henrik Josephson, Maria Ntzouni, Camilla Skoglund, Stig Linder, Maria V Turkina, Elena Vikström

Abstract

Mitochondria play crucial roles in cellular metabolism, signaling, longevity, and immune defense. Recent evidences have revealed that the host microbiota, including bacterial pathogens, impact mitochondrial behaviors and activities in the host. The pathogenicity of Pseudomonas aeruginosa requires quorum sensing (QS) cell-cell communication allowing the bacteria to sense population density and collectively control biofilm development, virulence traits, adaptation and interactions with the host. QS molecules, like N-3-oxo-dodecanoyl-L-homoserine lactone (3O-C12-HSL), can also modulate the behavior of host cells, e.g., epithelial barrier properties and innate immune responses. Here, in two types of cells, fibroblasts and intestinal epithelial cells, we investigated whether and how P. aeruginosa 3O-C12-HSL impacts the morphology of mitochondrial networks and their energetic characteristics, using high-resolution transmission electron microscopy, fluorescence live-cell imaging, assay for mitochondrial bioenergetics, and quantitative mass spectrometry for mitoproteomics and bioinformatics. We found that 3O-C12-HSL induced fragmentation of mitochondria, disruption of cristae and inner membrane ultrastructure, altered major characteristics of respiration and energetics, and decreased mitochondrial membrane potential, and that there are distinct cell-type specific details of these effects. Moreover, this was mechanistically accompanied by differential expression of both common and cell-type specific arrays of components in the mitochondrial proteome involved in their structural organization, electron transport chain complexes and response to stress. We suggest that this effect of 3O-C12-HSL on mitochondria may represent one of the events in the interaction between P. aeruginosa and host mitochondria and may have an impact on the pathogens strategy to hijack host cell activities to support their own survival and spreading.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。