Glucose enhances catecholamine-stimulated lipolysis via increased glycerol-3-phosphate synthesis in 3T3-L1 adipocytes and rat adipose tissue

葡萄糖通过增加 3T3-L1 脂肪细胞和大鼠脂肪组织中的 3-磷酸甘油合成来增强儿茶酚胺刺激的脂肪分解

阅读:6
作者:Nodoka Takeuchi, Kazuhiko Higashida, Xi Li, Naoya Nakai

Background

During lipolysis, triglyceride (TG) are hydrolyzed into a glycerol and fatty acids in adipocyte. A significant portion of the fatty acids are re-esterificated into TG, and this is a critical step in promoting lipolysis. Although glycerol-3-phosphate (G3P) is required for triglyceride synthesis in mammalian cell, the substrate for G3P synthesis during active lipolysis is not known. A recent study showed that the inhibition of glucose uptake reduces catecholamine-stimulated lipolysis, suggesting that glucose availability is important in lipolysis in adipocytes. We hypothesized that glucose might play an essential role in generating G3P and thereby promoting catecholamine-stimulated lipolysis in adipocytes. Therefore, we determined the effect of glucose availability on catecholamine-stimulated lipolysis in 3T3-L1 adipocytes and rat adipose tissue.

Conclusion

We demonstrated that catecholamine-stimulated lipolysis is enhanced in the presence of glucose, and suggests that glucose is one of the primary substrates for G3P in adipocytes during active lipolysis.

Results

3T3-L1 adipocytes and rat epididymal fat pads were cultured in a medium with/without glucose during stimulation by isoproterenol. Glycerol release was higher when adipocytes were cultured in a glucose-containing medium than that in a medium without glucose. Measurement of glucose uptake during catecholamine-stimulated lipolysis showed a slight, but significant increase in glucose uptake. We also compared glucose metabolism-related protein, such as glucose transporter 4, hexokinase, glycerol-3-phosphate dehydrogenase and lipase contents between fat tissues that play a critical role in active lipolysis. Epididymal fat exhibited higher lipolytic activity than inguinal fat because of higher lipase and glucose metabolism-related protein contents.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。