Renal-specific loss of ferroportin disrupts iron homeostasis and attenuates recovery from acute kidney injury

肾脏特异性的铁转运蛋白丢失会破坏铁稳态并减弱急性肾损伤的恢复

阅读:7
作者:Abdul Soofi, Vivie Li, Jeffrey A Beamish, Sham Abdrabh, Mawieh Hamad, Nupur K Das, Yatrik M Shah, Gregory R Dressler

Abstract

Chronic kidney disease is increasing at an alarming rate and correlates with the increase in diabetes, obesity, and hypertension that disproportionately impact socioeconomically disadvantaged communities. Iron plays essential roles in many biological processes including oxygen transport, mitochondrial function, cell proliferation, and regeneration. However, excess iron induces the generation and propagation of reactive oxygen species, which lead to oxidative stress, cellular damage, and ferroptosis. Iron homeostasis is regulated in part by the kidney through iron resorption from the glomerular filtrate and exports into the plasma by ferroportin (FPN). Yet, the impact of iron overload in the kidney has not been addressed. To test more directly whether excess iron accumulation is toxic to kidneys, we generated a kidney proximal tubule-specific knockout of FPN. Despite significant intracellular iron accumulation in FPN mutant tubules, basal kidney function was not measurably different from wild type kidneys. However, upon induction of acute kidney injury (AKI), FPN mutant kidneys exhibited significantly more damage and failed recovery, evidence for ferroptosis, and increased fibrosis. Thus, disruption of iron export in proximal tubules, leading to iron overload, can significantly impair recovery from AKI and can contribute to progressive renal damage indicative of chronic kidney disease. Understanding the mechanisms that regulate iron homeostasis in the kidney may provide new therapeutic strategies for progressive kidney disease and other ferroptosis-associated disorders.NEW & NOTEWORTHY Physiological iron homeostasis depends in part on renal resorption and export into the plasma. We show that specific deletion of iron exporters in the proximal tubules sensitizes cells to injury and inhibits recovery. This can promote a chronic kidney disease phenotype. Our paper demonstrates the need for iron balance in the proximal tubules to maintain and promote healthy recovery after acute kidney injury.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。