Proteomic identification of dopamine-conjugated proteins from isolated rat brain mitochondria and SH-SY5Y cells

大鼠脑线粒体和 SH-SY5Y 细胞中多巴胺结合蛋白的蛋白质组学鉴定

阅读:4
作者:Victor S Van Laar, Amanda J Mishizen, Michael Cascio, Teresa G Hastings

Abstract

Dopamine oxidation has been previously demonstrated to cause dysfunction in mitochondrial respiration and membrane permeability, possibly related to covalent modification of critical proteins by the reactive dopamine quinone. However, specific mitochondrial protein targets have not been identified. In this study, we utilized proteomic techniques to identify proteins directly conjugated with (14)C-dopamine from isolated rat brain mitochondria exposed to radiolabeled dopamine quinone (150 microM) and differentiated SH-SY5Y cells treated with (14)C-dopamine (150 microM). We observed a subset of rat brain mitochondrial proteins that were covalently modified by (14)C-dopamine, including chaperonin, ubiquinol-cytochrome c reductase core protein 1, glucose regulated protein 75/mitochondrial HSP70/mortalin, mitofilin, and mitochondrial creatine kinase. We also found the Parkinson's disease associated proteins ubiquitin carboxy-terminal hydrolase L1 and DJ-1 to be covalently modified by dopamine in both brain mitochondrial preparations and SH-SY5Y cells. The susceptibility of the identified proteins to covalent modification by dopamine may carry implications for their role in the vulnerability of dopaminergic neurons in Parkinson's disease pathogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。