The effects of platelet-rich plasma on hypertrophic scars fibroblasts

富血小板血浆对增生性瘢痕成纤维细胞的影响

阅读:7
作者:Seung Min Nam, Yong Bae Kim

Abstract

We hypothesised that a feedback mechanism of the transforming growth factor (TGF)-β1 signalling pathway, triggered by high-level TGF-β1, activates platelet-rich plasma (PRP) release to reduce connective tissue growth factor (CTGF) production and expression of CTGF mRNA in hypertrophic scar dermal fibroblasts. Primary dermal fibroblasts were isolated from cultures of hypertrophic scars. Cells were cultured after addition of serum-free Dulbecco's modified Eagle's medium supplemented with 5% (wt/vol) PRP or platelet-poor plasma (PPP). At 1, 4, 6, 8, 11, and 13 days after addition of PRP or PPP, the TGF-β1 and CTGF levels in supernatants were determined using solid-phase enzyme-linked immunosorbent assays. Quantitative reverse transcription polymerase chain reactions were performed to quantify TGF-β1 and CTGF mRNA expression levels. TGF-β1 mRNA expression in the PRP groups was lower than in the PPP groups from 4 to 13 days of culture, and there was statistically significant difference (P < .01). CTGF level and mRNA expression in the PRP groups was lower than in the PPP groups, and there were statistically significant differences (P < .01). Although further experiments will focus on clarifying the second messenger of the TGF-β1 negative feedback mechanism, the in vitro data presented show that PRP can potentially reduce CTGF and CTGF gene transcription by triggering the TGF-β1 signalling negative feedback mechanism.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。