UTP is a regulator of in vitro and in vivo angiogenic properties of cardiac adipose-derived stem cells

UTP 是心脏脂肪干细胞体外和体内血管生成特性的调节剂

阅读:8
作者:Marion Vanorlé, Anne Lemaire, Larissa di Pietrantonio, Michael Horckmans #, Didier Communi #

Abstract

The ability of cardiac adipose-derived stem cells (cADSC) to differentiate into multiple cell types has opened new perspectives in cardiac cell-based regenerative therapies. P2Y nucleotide receptors have already been described as regulators of adipogenic differentiation of cADSC and bone marrow-derived stem cells. In this study, we defined UTP as a regulator of cADSC endothelial differentiation. A daily UTP stimulation of cADSC during endothelial predifferentiation increased their capacity to form an endothelial network in matrigel. Additionally, pro-angiogenic UTP target genes such as epiregulin and hyaluronan synthase-1 were identified in predifferentiated cADSC by RNA sequencing experiments. Their regulation by UTP was confirmed by qPCR and ELISA experiments. We then evaluated the capacity of UTP-treated predifferentiated cADSC to increase post-ischemic revascularization in mice subjected to left anterior descending artery ligation. Predifferentiated cADSC treated or not with UTP were injected in the periphery of the infarcted zone, 3 days after ligation. We observed a significant increase of capillary density 14 and 30 days after UTP-treated predifferentiated cADSC injection, correlated with a reduction of cardiac fibrosis. This revascularization increase was not observed after injection of UTP-treated cADSC deficient for UTP and ATP nucleotide receptor P2Y2. The present study highlights the P2Y2 receptor as a regulator of cADSC endothelial differentiation and as a potential target for the therapeutic use of cADSC in post-ischemic heart revascularization.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。