Metabolism of 25-Hydroxy-Vitamin D in Human Macrophages Is Highly Dependent on Macrophage Polarization

人巨噬细胞中25-羟基维生素D的代谢高度依赖于巨噬细胞极化

阅读:2
作者:Rie H Nygaard ,Marlene C Nielsen ,Kristian W Antonsen ,Carsten S Højskov ,Boe S Sørensen ,Holger J Møller

Abstract

Macrophages synthesize active vitamin D (1,25-dihydroxy-vitamin D) and express the vitamin D receptor in the nucleus; however, vitamin D metabolism in relation to macrophage polarization and function is not well understood. We studied monocyte-derived macrophages (MDMs) from human buffy coats polarized into M0, M1 (LPS + IFNγ), M2a (IL4 + IL13) and M2c (IL10) macrophage subtypes stimulated with 25-hydroxy-vitamin D (1000 and 10,000 nanomolar). We measured vitamin D metabolites (25-hydroxy-vitamin D, 1,25-dihydroxy-vitamin D, 24,25-dihydroxy-vitamin D and 3-epi-25-hydroxy-vitamin D) in cell media with liquid chromatography-mass spectrometry-mass spectrometry. The mRNA expression (CYP27B1, CYP24A1 and CYP24A1-SV) was measured with qPCR. We found that reparative MDMs (M2a) had significantly more 1,25-dihydroxy-vitamin D compared to the other MDMs (M0, M1 and M2c). All MDMs were able to produce 3-epi-25-hydroxy-vitamin D, but this pathway was almost completely attenuated in inflammatory M1 MDMs. All MDM subtypes degraded vitamin D through the 24-hydroxylase pathway, although M1 MDMs mainly expressed an inactive splice variant of CYP24A1, coding the degrading enzyme. In conclusion, this study shows that vitamin D metabolism is highly dependent on macrophage polarization and that the C3-epimerase pathway for vitamin D is active in macrophages.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。