TRPC6 inactivation does not affect loss of renal function in nephrotoxic serum glomerulonephritis in rats, but reduces severity of glomerular lesions

TRPC6失活不会影响大鼠肾毒性血清性肾小球肾炎的肾功能丧失,但会降低肾小球病变的严重程度

阅读:4
作者:Eun Young Kim, Parisa Yazdizadeh Shotorbani, Stuart E Dryer

Abstract

Canonical transient receptor potential-6 (TRPC6) channels have been implicated in a variety of chronic kidney diseases including familial and acquired forms of focal and segmental glomerulosclerosis (FSGS) and renal fibrosis following ureteral obstruction. Here we have examined the role of TRPC6 in progression of inflammation and fibrosis in the nephrotoxic serum (NTS) model of crescentic glomerulonephritis. This was assessed in rats with non-functional TRPC6 channels due to genomic disruption of an essential domain in TRPC6 channels (Trpc6 del/del rats) and wild-type littermates (Trpc6 wt/wt rats). Administration of NTS evoked albuminuria and proteinuria observed 4 and 28 days later that was equally severe in Trpc6 wt/wt and Trpc6 del/del rats. By 28 days, there were dense deposits of complement and IgG within glomeruli in both genotypes, accompanied by severe inflammation and fibrosis readily observed by standard histological methods, and also by increases in renal cortical expression of multiple markers (α-smooth muscle actin, vimentin, NLRP3, and CD68). Tubulointerstitial fibrosis appeared equally severe in Trpc6 wt/wt and Trpc6 del/del rats. TRPC6 inactivation did not protect against the substantial declines in renal function (increases in blood urea nitrogen, serum creatinine and kidney:body weight ratio) in NTS-treated animals, and increases in a urine maker of proximal tubule pathology (β2-macroglobulin) were actually more severe in Trpc6 del/del animals. By contrast, glomerular pathology, blindly scored from histology, and from renal cortical expression of podocin suggested a partial but significant protective effect of TRPC6 inactivation within the glomerular compartment, at least during the autologous phase of the NTS model.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。