Assessment of bioactive peptides derived from laminin-111 as prospective breast cancer-targeting agents

层粘连蛋白-111 衍生的生物活性肽作为乳腺癌靶向药物的评估

阅读:5
作者:Fernanda Ferreira Mendonça, Danielle Vieira Sobral, Ana Claudia Ranucci Durante, Ana Cláudia Camargo Miranda, Jorge Mejia, Daniele de Paula Faria, Fabio Luiz Navarro Marques, Marycel Figols de Barboza, Leonardo Lima Fuscaldi, Luciana Malavolta

Abstract

Breast cancer remains a pressing public health issue primarily affecting women. Recent research has spotlighted bioactive peptides derived from laminin-111, implicated in breast tumor development. Remarkably, the sequences IKVAV, YIGSR, and KAFDITYVRLKF from the α1, β1, and γ1 chains, respectively, have garnered significant attention. This study aims to assess the potential of these radiolabeled peptides as targeting agents for breast cancer. The three peptides were synthesized using the Fmoc strategy, purified via reversed-phase high-performance liquid chromatography (RP-HPLC), and characterized through mass spectrometry. Iodine-131 (131I) radiolabeling was performed using the chloramine T method, exhibiting high radiochemical yield and stability for [131I]I-YIKVAV and [131I]I-YIGSR. Conversely, [131I]I-KAFDITYVRLKF demonstrated low radiochemical yield and stability and was excluded from the biological studies. The lipophilicity of the compounds ranged from - 2.12 to - 1.10. Serum protein binding assay for [131I]I-YIKVAV and [131I]I-YIGSR reached ≅ 48% and ≅ 25%, respectively. Affinity for breast cancer cells was evaluated using MDA-MB-231 and MCF-7 tumor cell lines, indicating the affinity of the radiopeptides with these tumor cells. Ex vivo biodistribution profiles of the radiopeptides were assessed in the MDA-MB-231 breast tumor animal model, revealing tumor tissue accumulation, supported by a high tumor-to-contralateral muscle ratio and autoradiography. These results signify the effective penetration of YIKVAV and YIGSR into tumor tissue. Therefore, the synthesized α1 and β1 peptide fragments exhibit favorable characteristics as potential breast cancer-targeting agents, promising future exploration as radiopharmaceuticals for breast cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。