Construction and Identification of a Novel Mice Model of Microphthalmia

一种新型小鼠小眼畸形模型的建立及鉴定

阅读:7
作者:Dan Li, Kaiwen Cheng, Xiangjia Zhu

Conclusions

The TgGli3Ki/Ki mouse model consistently manifests the stereotypical microphthalmia phenotype across generations, making it an excellent tool for studying this severe eye disease. Translational relevance: This study developed a novel animal model to facilitate clinical research on microphthalmia.

Methods

The Hedgehog signaling pathway plays a crucial role in eye development. One of the key mechanisms of the Sonic Hedgehog signaling is the strong transcriptional activation ability of GLI3, a major mediator of this pathway. This study used CRISPR/Cas9 system to construct a novel TgGli3Ki/Ki lens-specific over-expression mouse line. To identify the ocular characteristics of this line, quantitative PCR, Western blot, hematoxylin and eosin staining, immunofluorescent staining, and RNA-seq were performed on the ocular tissues of this line and normal mice.

Purpose

Microphthalmia is a rare developmental eye disease that affects 1 in 7000 births. Currently, there is no cure for this condition. This study aimed to construct a stable mouse model of microphthalmia, thus providing a new tool for the study of the etiology of microphthalmia.

Results

The TgGli3Ki/Ki lens-specific over-expression mouse model exhibits the ocular phenotype of microphthalmia. In the TgGli3Ki/Ki mouse, Gli3 is over-expressed in the lens, and the size of the eyeball and lens is significantly smaller than the normal one. RNA-seq analysis using the lens and the retina samples from TgGli3Ki/Ki and normal mice indicates that the phototransduction pathway is ectopically activated in the lens. Immunofluorescent staining of the lens samples confirmed this activation. Conclusions: The TgGli3Ki/Ki mouse model consistently manifests the stereotypical microphthalmia phenotype across generations, making it an excellent tool for studying this severe eye disease. Translational relevance: This study developed a novel animal model to facilitate clinical research on microphthalmia.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。