Feline lentivirus evolution in cross-species infection reveals extensive G-to-A mutation and selection on key residues in the viral polymerase

跨物种感染中的猫慢病毒进化揭示了病毒聚合酶中广泛的 G 到 A 突变和关键残基的选择

阅读:5
作者:Mary Poss, Howard A Ross, Sally L Painter, David C Holley, Julie A Terwee, Sue Vandewoude, Allen Rodrigo

Abstract

Factors that restrict a virus from establishing productive infection in a new host species are important to understand because cross-species transmission events are often associated with emergent viral diseases. To determine the evolutionary pressures on viruses in new host species, we evaluated the molecular evolution of a feline immunodeficiency virus derived from a wild cougar, Puma concolor, during infection of domestic cats. Analyses were based on the coding portion of genome sequences recovered at intervals over 37 weeks of infection of six cats inoculated by either intravenous or oral-nasal routes. All cats inoculated intravenously, but only one inoculated orally-nasally, became persistently viremic. There were notable accumulations of lethal errors and predominance of G-to-A alterations throughout the genome, which were marked in the viral polymerase gene, pol. Viral structural (env and gag) and accessory (vif and orfA) genes evolved neutrally or were under purifying selection. However, sites under positive selection were identified in reverse transcriptase that involved residues in the nucleotide binding pocket or those contacting the RNA-DNA duplex. The findings of extensive G-to-A alterations in this cross-species infection are consistent with the recently described editing of host cytidine deaminase on lentivirus genomes. Additionally, we demonstrate that the primary site of hypermutation is the viral pol gene and the dominant selective force acting on this feline immunodeficiency virus as it replicates in a new host species is on key residues of the virus polymerase.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。