Effect of condensed tannin extract supplementation on growth performance, nitrogen balance, gas emissions, and energetic losses of beef steers

缩合单宁提取物补充剂对肉牛生长性能、氮平衡、气体排放和能量损失的影响

阅读:4
作者:P J Ebert, E A Bailey, A L Shreck, J S Jennings, N A Cole

Abstract

Condensed tannins (CT) may decrease greenhouse gas emissions and alter the site of N excreted by ruminants. We evaluated the effect of top-dressing a steam-flaked corn-based finishing diet (14.4% CP and NEg 1.47 Mcal/kg) for beef cattle with a commercially available CT extract at 3 levels (0, 0.5, and 1.0% of diet, DM basis). Angus-crossbred steers ( = 27; 350 ± 32 kg initial BW) were individually fed via Calan gates for 126 d. Diet digestibility and N balance were estimated after 34 and 95 d on feed (Phase 1 and Phase 2, respectively) using titanium dioxide as a marker of fecal output and the creatinine:BW ratio as a marker for urine output. Ruminal CH and metabolic CO fluxes were measured using a GreenFeed system (C-Lock Inc., Rapid City, SD) for 2 sampling periods that coincided with fecal and urine sampling. Urine energy loss was estimated from urine N excretion, assuming all excreted N was urea. Oxygen consumption was estimated from CO production assuming a respiratory quotient of 1.05. Average daily gain (2.08, 2.14, and 2.08 kg/d for 0, 0.5, and 1.0% CT, respectively) and G:F did not differ ( = 0.88) among treatments. Starch intake and OM intake did not differ ( ≥ 0.42) among treatments during each phase. Apparent total tract starch digestibility during Phase 1 linearly decreased ( = 0.04) with inclusion of CT. Apparent total tract digestibility of OM and starch were not different among treatments ( ≥ 0.13) during Phase 2. Nitrogen intake did not differ ( ≥ 0.16) among treatments during each phase, but fecal N excretion linearly increased ( = 0.05) with inclusion of CT during Phase 1. Urinary N excretion was not different ( ≥ 0.39) among treatments during both phases, but urinary N as a proportion of total N excretion linearly decreased ( = 0.01) when CT was included in the diet during Phase 1. Retained N was not different ( ≥ 0.27) among treatments during each phase. Fluxes of CO were similar ( ≥ 0.37) among treatments during both phases. No differences ( ≥ 0.23) were observed for percentage of GE intake lost as CH (2.99, 3.12, and 3.09% in Phase 1 and 3.54, 3.55, and 4.35% in Phase 2) for 0, 0.5, and 1.0% CT, respectively. No difference ( ≥ 0.42) was observed for heat production lost as a percent of GE intake during both phases. Growth performance, gas emissions, and energetic losses were not affected by the inclusion CT in a steam-flaked corn-based finishing diet.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。