Arsenic exposure and lung fibrotic changes-evidence from a longitudinal cohort study and experimental models

砷暴露与肺纤维化变化——来自纵向队列研究和实验模型的证据

阅读:4
作者:Chih-Wen Wang, Hsin-Ying Clair Chiou, Szu-Chia Chen, Da-Wei Wu, Hung-Hsun Lin, Huang-Chi Chen, Wei-Ting Liao, Ming-Hong Lin, Chih-Hsing Hung, Chao-Hung Kuo

Discussion

we demonstrated that continued exposure to arsenic causes lung fibrosis in humans and mice. Targeting lung epithelial cells EMT is effective on the development of therapeutic strategy. Apigenin is effective in the inhibition of arsenic-induced pulmonary fibrosis and EMT.

Methods

Participants (n= 976) enrolled via a general health survey underwent chest low-dose computed tomography (LDCT), spirometry forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC), and urinary arsenic examination during 2016 and 2018. Lung fibrotic changes from LDCT were defined. AsLtoL, low arsenic levels in both 2016 and 2018; AsLtoH, low arsenic in 2016 but high levels in 2018; AsHtoL, high arsenic in 2016 but low levels in 2018; AsHtoH, high arsenic levels in both 2016 and 2018. Mice exposed to 0. 0.2mg/L, 2 mg/L, 50 mg/L of sodium arsenite (NaAsO2) through drinking water for 12 weeks and 24 weeks were applied for histological analysis. Cultured lung epithelial cells were exposed to NaAsO2 and the mesenchymal changes were examined.

Results

AsHtoH increased the risk (OR= 1.65, 95% CI 1.10, 2.49) of Lung fibrotic positive to positive (reference: Lung fibrotic negative to negative) compared with AsLtoL. Moreover, the predicted mean of FVC and FEV1 in AsHtoH (-0.09 units, 95% CI: -0.27, -0.09; -0.09 units, 95% CI: -0.17, -0.01) and AsLtoH (-0.13 units, 95% CI: -0.30, -0.10; -0.13 units, 95% CI: -0.22, -0.04) was significantly lower than ASLtoL. Significant lung fibrotic changes including the increase of the alveolar septum thickness and collagen fiber deposition were observed upon 2 mg/L NaAsO2 treatment for 12 weeks, and the damage was dose- and time-dependent. In vitro, sodium arsenite treatment promotes the epithelial-mesenchymal transition (EMT)-like changes of the normal human bronchial epithelial cells, including upregulation of several fibrotic and mesenchymal markers (fibronectin, MMP-2, and Snail) and cell migration. Inhibition of reactive oxygen species (ROS) and MMP-2 impaired the arsenic-induced EMT changes. Administration of a flavonoid, apigenin, inhibited EMT in vitro and pulmonary damages in vivo with the reduction of mesenchymal markers.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。