CircTYW1 serves as a sponge for microRNA-380 in accelerating neurological recovery following spinal cord injury via regulating FGF9

CircTYW1 作为 microRNA-380 的海绵,通过调节 FGF9 加速脊髓损伤后的神经恢复

阅读:6
作者:Yanpeng Sun, Yingjie Zhou, Xiangqin Shi, Xiaoran Ma, Xiaodong Peng, Yan Xie, Xiangyang Cao

Abstract

As one of the most severe kinds of neurological damage, spinal cord injury (SCI) contributes to persistent motor dysfunction and involves a large repertoire of gene alterations. The participation of circular RNAs (circRNAs) in neurological recovery following SCI needs to be clarified. In the current work, we attempted to assess the function of hsa_circRNA_0003962/circTYW1 and its underlying mechanism in SCI. By accessing the GEO repository, the expression of circTYW1, microRNA-380 (miR-380), and FGF9 in SCI and sham-operated rats was evaluated. PC12 cells after oxygen-glucose deprivation (OGD) treatment were prepared to mimic the SCI model. circTYW1 and FGF9 were poorly expressed, whereas miR-380 was highly expressed in the spinal cord tissues of SCI rats. circTYW1 promoted neurological recovery in SCI rats and inhibited apoptosis in spinal cord tissues. In PC12 cells exposed to OGD, circTYW1 suppressed PC12 cell apoptosis; however, miR-380 overexpression reversed the protective effect of circTYW1 on PC12 cells. Also, circTYW1 promoted FGF9 expression through competitively binding to miR-380, which activated the ERK1/2 signaling. In summary, our results demonstrated that declines in circTYW1 prevented SCI rats from neurological recovery by regulating the miR-380/FGF9/ERK1/2 axis, which might provide new understanding for SCI treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。