Inhibition of DAMP actions in the tumoral microenvironment using lactoferrin-glycyrrhizin conjugate for glioblastoma therapy

使用乳铁蛋白-甘草酸结合物抑制肿瘤微环境中的 DAMP 作用以治疗胶质母细胞瘤

阅读:9
作者:Hyung Shik Kim, Seok Chan Park, Hae Jin Kim, Dong Yun Lee

Background

High-mobility group box-1 (HMGB1) released from the tumor microenvironment plays a pivotal role in the tumor progression. HMGB1 serves as a damaged-associated molecular pattern (DAMP) that induces tumor angiogenesis and its development. Glycyrrhizin (GL) is an effective intracellular antagonist of tumor released HMGB1, but its pharmacokinetics (PK) and delivery to tumor site is deficient. To address this shortcoming, we developed lactoferrin-glycyrrhizin (Lf-GL) conjugate.

Conclusion

Collectively, our study demonstrates a close association between HMGB1 and tumor progression, suggesting Lf-GL as a potential strategy for coping with DAMP-related tumor microenvironment. HMGB1 is a tumor-promoting DAMP in the tumor microenvironment. The high binding capability of Lf-GL to HMGB1 inhibits tumor progression cascade such as tumor angiogenesis, development, and metastasis. Lf-GL targets GBM through interaction with LfR and allows to arrest HMGB1 released from the tumor microenvironment. Therefore, Lf-GL can be a GBM treatment by modulating HMGB1 activity.

Methods

Biomolecular interaction between Lf-GL and HMGB1 was evaluated by surface plasmon resonance (SPR) binding affinity assay. Inhibition of tumor angiogenesis and development by Lf-GL attenuating HMGB1 action in the tumor microenvironment was comprehensively evaluated through in vitro, ex vivo, and in vivo. Pharmacokinetic study and anti-tumor effects of Lf-GL were investigated in orthotopic glioblastoma mice model.

Results

Lf-GL interacts with lactoferrin receptor (LfR) expressed on BBB and GBM, therefore, efficiently inhibits HMGB1 in both the cytoplasmic and extracellular regions of tumors. Regarding the tumor microenvironment, Lf-GL inhibits angiogenesis and tumor growth by blocking HMGB1 released from necrotic tumors and preventing recruitment of vascular endothelial cells. In addition, Lf-GL improved the PK properties of GL approximately tenfold in the GBM mouse model and reduced tumor growth by 32%. Concurrently, various biomarkers for tumor were radically diminished.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。