Synthesis of Novel Antimicrobial CHX-CaCl2 Coatings on Maxillofacial Fixatures for Infection Prevention

颌面固定装置上新型抗菌 CHX-CaCl2 涂层的合成及其用于预防感染

阅读:6
作者:Hawraa F Alostath, Domniki Chatzopoulou, Simon Holmes, David Gould, Gleb Sukhorukov, Michael J Cattell

Abstract

Maxillofacial surgery placement of fixatures (Leonard Buttons, LB) at close proximity to surgical incisions provides a potential reservoir as a secondary local factor to advanced periodontal disease, with bacterial formation around failed fixatures implicating plaque. To address infection rates, we aimed to surface coat LB and Titanium (Ti) discs using a novel form of chlorhexidine (CHX), CHX-CaCl2 and 0.2% CHX digluconate mouthwash as a comparison. CHX-CaCl2 coated, double-coated and mouthwash coated LB and Ti discs were transferred to 1 mL artificial saliva (AS) at specified time points, and UV-Visible spectroscopy (254 nm) was used to measure CHX release. The zone of inhibition (ZOI) was measured using collected aliquots against bacterial strains. Specimens were characterized using Energy Dispersive X-ray Spectroscopy (EDS), X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). SEM displayed copious dendritic crystals on LB/ Ti disc surfaces. Drug release from double-coated CHX-CaCl2 was 14 days (Ti discs) and 6 days (LB) above MIC, compared to the comparison group (20 min). The ZOI for the CHX-CaCl2 coated groups was significantly different within groups (p < 0.05). CHX-CaCl2 surface crystallization is a new drug technology for controlled and sustained CHX release; its antibacterial effectiveness makes this drug an ideal adjunct following clinical and surgical procedures to maintain oral hygiene and prevent surgical site infections.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。