Regulation of tyrosine hydroxylase is preserved across different homo- and heterodimeric 14-3-3 proteins

酪氨酸羟化酶的调节在不同的同源和异源二聚体 14-3-3 蛋白中得以保留

阅读:6
作者:Sadaf Ghorbani, Agnete Fossbakk, Ana Jorge-Finnigan, Marte I Flydal, Jan Haavik, Rune Kleppe

Abstract

Tyrosine hydroxylase (TH) is regulated by members of the 14-3-3 protein family. However, knowledge about the variation between 14-3-3 proteins in their regulation of TH is still limited. We examined the binding, effects on activation and dephosphorylation kinetics of tyrosine hydroxylase (TH) by abundant midbrain 14-3-3 proteins (β, η, ζ, γ and ε) of different dimer composition. All 14-3-3 homodimers and their respective 14-3-3ε-heterodimers bound with similar high affinity (K d values of 1.4-3.8 nM) to serine19 phosphorylated human TH (TH-pS19). We similarly observed a consistent activation of bovine (3.3- to 4.4-fold) and human TH-pS19 (1.3-1.6 fold) across all the different 14-3-3 dimer species, with homodimeric 14-3-3γ being the strongest activator. Both hetero- and homodimers of 14-3-3 strongly inhibited dephosphorylation of TH-pS19, and we speculate if this is an important homeostatic mechanism of 14-3-3 target-protein regulation in vivo. We conclude that TH is a robust interaction partner of different 14-3-3 dimer types with moderate variability between the 14-3-3 dimers on their regulation of TH.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。