Synthesis, Cytotoxic Activity and In Silico Study of Novel Dihydropyridine Carboxylic Acids Derivatives

新型二氢吡啶羧酸衍生物的合成、细胞毒活性及计算机模拟研究

阅读:17
作者:Ricardo Ballinas-Indilí, María Inés Nicolás-Vázquez, Joel Martínez, María Teresa Ramírez-Apan, Cecilio Álvarez-Toledano, Alfredo Toscano, Maricarmen Hernández-Rodríguez, Elvia Mera Jiménez, René Miranda Ruvalcaba

Abstract

To aid the possible prevention of multidrug resistance in tumors and cause lower toxicity, a set of sixteen novel dihydropyridine carboxylic acids derivatives 3a-p were produced; thus, the activation of various ynones with triflic anhydride was performed, involving a nucleophilic addition of several bis(trimethylsilyl) ketene acetals, achieving good yields requiring easy workup. The target molecules were unequivocally characterized by common spectroscopic methods. In addition, two of the tested compounds (3a, and 3b) were selected to perform in silico studies due to the highest cytotoxic activity towards the HCT-15 cell line (7.94 ± 1.6 μM and 9.24 ± 0.9 μM, respectively). Employing theoretical calculations with density functional theory (DFT) using the B3LYP/6-311++G(d,p) showed that the molecular parameters correlate adequately with the experimental results. In contrast, predictions employing Osiris Property Explorer showed that compounds 3a and 3b present physicochemical characteristics that would likely make it an orally active drug. Moreover, the performance of Docking studies with proteins related to the apoptosis pathway allowed a proposal of which compounds could interact with PARP-1 protein. Pondering the obtained results (synthesis, in silico, and cytotoxic activity) of the target compounds, they can be judged as suitable antineoplastic agent candidates.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。